3.3 Work Energy and Power

Mark scheme - Work, Energy and Power

	Answer/Indicative content	Mar ks	Guidance
1	work done $=$ force \times distance moved or displacement in the direction of the force	B1	
	Total	1	
2	A	1	
	Total	1	
3	A	1	
	Total	1	
4	B	1	
	Total	1	
5	C	1	
	Total	1	
6	B	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
	Total	1	
7	B	1	
	Total	1	
8	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
	Total	1	
9	C	1	
	Total	1	

3.3 Work Energy and Power

1 0		power or P: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$	B1	power $=$ force \times distance $/$ time $=$ force \times velocity
		Total	1	
11		D	1	
		Total	1	
1		B	1	
		Total	1	
1 3	a	$\begin{aligned} & \text { GPE loss }=\mathrm{mgh}=0.60 \times 9.81 \times 0.050= \\ & 0.29 \mathrm{~J} \end{aligned}$	A1	
	b	$\begin{aligned} & \text { EPE }=1 / 2 \mathrm{~F} \times=0.50 \times 5.88 \times 0.05 \\ & =0.147 \mathrm{~J} \\ & (\text { or } \mathrm{k}=\mathrm{F} / \times=5.88 / 0.050=118 \mathrm{~N} / \mathrm{m}, \mathrm{EPE} \\ & =1 / 2 \mathrm{k} \mathrm{x}=1 / 2 \times 118 \times 0.050^{2} \\ & =0.147 \mathrm{~J}) \end{aligned}$	M1 A1	Allow answers to 2 s.f.
	c	GPE \rightarrow EPE +KE (when falling) EPE \rightarrow GPE + KE (when rising) Some energy dissipated as heat as oscillates (because of air resistance / friction)	B1 B1 B1	
		Total	6	
$\begin{array}{\|l} 1 \\ 4 \end{array}$		B	1	
		Total	1	
5		C	1	
		Total	1	
1		C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The correct key was \mathbf{C} and the most popular distractor was \mathbf{A}. The kinetic energy of the ball at the ground was K. At maximum height, the ball just has horizontal component of velocity. The kinetic energy of the ball is proportional to speed ${ }^{2}$. At the

3.3 Work Energy and Power

			maximum height the kinetic energy must therefore be $\cos ^{2} 30^{\circ} \mathrm{K}$ $=0.75 \mathrm{~K}$.
	Total	1	
1	C	1	
	Total	1	
1	C	1	
	Total	1	
1	$\begin{aligned} & \left(\mathrm{KE}=1 / 2 \times 0.900 \times 2.0^{2}\right) \\ & \text { kinetic energy }=1.8(\mathrm{~J}) \end{aligned}$	B1	Examiner's Comments Most of the candidates answered this opening question extremely well, with the majority picking up the mark. The two most popular errors were omitting to square the speed of the trolley and using 900 g instead of 0.900 kg .
	Total	1	
2	A	1	
	Total	1	
2 1	A	1	Examiner's Comments The key to this question is to consider the GPE lost and equate it to the KE gained. The GPE lost here $=$ mass $\times 9.81 \times 0.20=1 / 2 \times$ mass $\times v^{2}$. The masses cancel (which is why the mass wasn't given). This makes $v^{2}=3.924$. The most common wrong answer was B, as candidates had forgotten to take the square root. The correct speed is $1.98 \mathrm{~m} \mathrm{~s}^{-1}$ giving the correct answer, A .
	Total	1	
2	A	1	
	Total	1	
2 3	c	1	
	Total	1	
2	D	1	Examiner's Comments This question is based on the equation $P=F v$, which also appears in the Data, Formulae and Relationship Booklet. In the question, information is given about the frictional force F, which is directly proportional to v^{2}. Therefore, the rate of work done P must be proportional to v^{3}; making D as the answer. Most candidates struggled with this question, with all the distractors being equally popular. Less than a quarter of the candidates, mainly from the upper quartile, scored a mark in this question.

3.3 Work Energy and Power

3.3 Work Energy and Power

				The diagram below shows a rotating steam generator. The steam ejected from the nozzles provides a couple. The force at each nozzle is 0.12 N . The perpondicular distance betwoen the nozzles is $8.2 \times 10^{-2} \mathrm{~m}$. What is the work done by the forces as the steam generator completes one revolution? A OJ x B $9.8 \times 10^{-3} \mathrm{~J}$ $W=E \times 1$ C $3.1 \times 10^{-2} \mathrm{~J}$ $0.12 \times 8.2 \times 10^{-1}$ D $6.2 \times 10^{-2} \mathrm{~J}$ $=9.490^{-3}$ Your answer \square The candidate has either written the equation for work done, or torque of a couple. Substitution shows that the torque has been calculated. Unfortunately, the response of $9.8 \times 10^{-3} \mathrm{~J}$ was there as one of the options. This exemplar shows that if the starting point is incorrect, it can easily lead to what looks like a promising response.
		Total	1	
$\begin{aligned} & 2 \\ & 8 \end{aligned}$		B	1	
		Total	1	
2		power \times time $=2200 \times 4.0 \times 60$ energy $=5.3 \times 10^{5}(\mathrm{~J})$	C1 A1	Note: Answer to 3 s.f. is $5.28 \times 10^{5}(\mathrm{~J})$ Examiner's Comments Virtually all candidates correctly found the total energy supplied, remembering to convert the time from minutes into seconds.
		Total	2	
3	a	$\begin{aligned} & \text { work done }=400 \times 0.80 \\ & \text { work done }=320(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Examiner's Comments This was answered correctly by most candidates; a tiny number did not convert from cm to m correctly.
	b	```ratio of speeds = ratio of distances (since same time) or ratio = 80 / 2 ratio =40```	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 40:1 Allow 2 marks for ratio 29.4 (assuming p same) Not 1:40 for A1 Examiner's Comments Unsuccessful candidates tried to employ 'suvat' equations, although many candidates realised that the required ratio was also the ratio of the distances travelled in the same time period. Some credit was given for those candidates that assumed constant pressure and 100% efficiency.
	c	work done $=1200 \times 9.81 \times 0.02(=235.4)$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Using $g=10 \mathrm{Nkg}^{-1}$ gives 75\%: allow 1 mark max

3.3 Work Energy and Power

		$\begin{aligned} & \text { efficiency }=235.4 / 320 \times 100 \\ & \text { efficiency }=74 \% \end{aligned}$		Possible ECF from (a) Note: 0.74 scores 1 mark Allow 2 marks for using 235/320 $\times 100=73 \%$ Allow use of $9.8 \mathrm{~N} \mathrm{~kg}^{-1}$ gives 73.5% for 2 marks Allow 1 mark for 71%, force $=(1200 g-400) N$ used Allow 1 mark for 76%, force $=(1200 g+400) N$ used Examiner's Comments The majority of candidates successfully calculated the work done on the car and hence the efficiency of the system.
		Total	6	
3 1		(Kinetic energy) reduces (with height) At maximum height, KE is minimum / nonzero	B1 B1	Allow idea that KE is transferred to GPE / KE store reduces and GPE store increases Not references to KE being a vector / having components for second mark
		Total	2	
3		$1.2 \times 10^{6}=1 / 2 \times($ mass per second $) \times 8.0^{2}$ mass per s $=3.8 \times 10^{4}\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$	C1 A1	Answer is $3.75 \times 10^{4}\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$ to 3 sf Note: $3.8 \times 10 \mathrm{n}\left(\mathrm{kg} \mathrm{s}^{-1}\right)$ scores 1 for PoT error. Examiner's Comments A large majority of candidates got this right. Those that did not usually forgot to square the velocity.
		Total	2	
3 3		$\begin{aligned} & 3000 \times 9.8 \times 12 / 0.60 \\ & =588 \mathrm{~kJ} \end{aligned}$	C1 A1	
		Total	2	
3 4		$\begin{aligned} & E_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2} \text { and } p=m v \\ & \text { (Correct manipulation leading to) } E_{\mathrm{k}}=1 / 2 \\ & \mathrm{p}^{2} / m \end{aligned}$	M1 A1	Allow: any subject Allow: $\mathrm{E}_{\mathrm{k}}=\mathrm{p}^{2} /(2 \mathrm{~m})$
		Total	2	
$\begin{aligned} & 3 \\ & 5 \end{aligned}$		The force is towards the centre of the circle. The force is perpendicular to the motion or no component of force in direction of motion; hence no work is done on the particle.	B1 B1	
		Total	2	

3.3 Work Energy and Power

	a		(change in) $\mathrm{KE}=($ change in) $\mathrm{GPE} / \mathrm{AW}$ $1 / 2(m+0.8) v^{2}=0.6 m g$ (and hence equation as shown on	M1	allow $\mathrm{mgh}=1 / 2 \mathrm{Mv} v^{2}$ as long as it is clear that m and M are different, i.e. NOT $m g h=1 / 2 m v^{2}$ allow linear motion equation $v^{2}=u^{2}+2$ as and $F=M a$ $(W=) m g=(m+0.8) a ; u=0 \text { and } s=0.6$ Examiner's Comments The challenge to candidates in answering this show that question was to produce a convincing proof. More chose to use constant acceleration equations and $F=m a$ rather than loss of potential energy equates to gain in kinetic energy. The difficulty in the former method was justifying the statement $F=m g=(m+$ $0.800) a$. Most just quoted that $a=m g /(m+0.800)$ which immediately gave the relationship shown in the question. The difficulty with the second method was that most candidates wrote $m g h= \pm 1 / 2 m v^{2}$ as the first line of their answer. In the next line one m became ($m+0.800$) without explanation to give the required relationship. Only candidates who gave more explanation were credited the marks. The candidate who wrote this perfect answer (exemplar 7) solved the problem in the first method of solution by introducing the tension in the string (labelled T on Fig. 4.1). Exemplar 7 (a). Show that the relationship between v and m is $v^{2}=\frac{1.20 m g}{(m+0.800 \ddot{m})}$ where g is the acceleration of free fall. $\begin{aligned} & T=0.800 a \\ & M g-T=m a \\ & M g=a[(0.800)+m] \end{aligned}$
	b	i	$\left(v^{2}=\right) 4.93$ $\pm \pm \text { (} 0.22$	B1 B1	allow 4.9 (\pm) 0.2 (same number of decimal places)
		ii	Point (and error bar) plotted correctly Line of best-fit drawn through all points shown (use protractor tool at 49°)	B1	tolerance $\pm 1 / 2$ small square; possible ecf from (b)(i) allow ecf from point plotted incorrectly or point omitted Examiner's Comments Most candidates calculated the value of v^{2} to two decimal places successfully. Fewer were successful in giving the absolute uncertainty as ± 0.22. A popular distractor was ± 0.10. On the graph of Fig. 4.2 only the correct position of the point was required to gain the mark. The length of the uncertainty bar was ignored. A significant number of candidates forgot to draw the line of best fit on the graph.
	c	i	$v^{2}=\frac{1.20 m g}{(m+0.800)} \quad \text { compared with }$ $y=m x+c$	B1	allow minimum of gradient $=v^{2} /[\mathrm{m} /(\mathrm{m}+0.8)]=1.2 \mathrm{~g}$ or expect $y=v^{2}$ and $x=m /(m+0.800)$ so gradient $=1.20 \mathrm{~g}$ Examiner's Comments

3.3 Work Energy and Power

				The common successful method employed by the majority was to compare the given equation with standard form for a straight line $y=m x+c$. A simple rearrangement of the relationship without any explanation was not considered to be adequate.
		one acceptable worst-fit line drawn large triangle used to determine gradient Gradient (used to determine 'worst' g) absolute uncertainty given to one decimal place	B1	roughly between extremes of top and bottom error bars or by eye; consequential ecfs for rest of (ii) $\Delta x>0.13 ;$ expect steepest 12.5 ± 0.2 or shallowest 10.3 ± 0.2 if point from bii not plotted steepest line is 12.9 answer from ± 0.8 to $1.1\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$; allow ecf from gradient value Examiner's Comments To avoid the problem of various lengths of error bar, candidates were judged to have drawn an acceptable worst fit line if it passed through opposite ends of the top and bottom bars on their graphs. Almost all gained the mark for using a triangle to determine the gradient of the line which spanned more than 0.13 on the x-scale. Most candidates were able to gain credit for finding the gradient of their graph correctly. The determination of the absolute uncertainty to one decimal place then proved to be too difficult a challenge for the majority.
	d	card appears shorter or time measured shorter calculated speed of trolley larger gradient of graph steeper or $v^{2} \alpha \mathrm{~g} / \mathrm{AW}$ so calculated g is greater	B1 B1 B1 B1	N.B. each B mark is consequential on the previous statement; e.g. ecf max of 3 marks for correct consequences of stating card appears longer or time longer Examiner's Comments Candidates gave full and usually clear answers to this part. There were four consequential marking points in this answer. Each candidate was given credit for every point that followed logically from the previous one, even when that previous one was incorrect. In the example (exemplar 8) shown here the candidate stated that the card appeared longer, which is incorrect. There were still three marks available for stating that the speed would appear lower and deducing that g would appear smaller. By this method most candidates were credited with at least half of the available marks. Exemplar 8 So constant uelaity.............. decreases..........E $v^{2}=\frac{m}{m+0805} \cdot \log \cdot$ Gradtent would be smaher, therefore, the value of g wauld........... sablere........ECF.
		Total	15	
3 7	a	(kinetic energy =) $1.6 \times 10^{-19} \times 300$	C1	

3.3 Work Energy and Power

3.3 Work Energy and Power

		graph $\begin{aligned} & 1 / 2 v^{2}\left(=\Delta V_{(\mathrm{g})}\right)=7.0 \times 10^{-2}-5.1 \times 10^{-2} \\ & v=0.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	(C1) (A1)	
		Total	10	
$\begin{aligned} & 3 \\ & 9 \end{aligned}$	a	$\begin{aligned} & \text { energy input }=m c \Delta \theta=0.327 \times 4200 \times 80= \\ & 110 \mathrm{~kJ} \\ & \text { energy input }=\text { power } \times \text { time } \\ & \text { time }=220(\mathrm{~s}) \end{aligned}$	C1 M1 C1 A0	Allow 0.3 kg in the calculation
	b	Thermal losses to kettle and surroundings Lagging the kettle Cover to prevent evaporation	B1 B1 B1	
		Total	6	
$\begin{aligned} & 4 \\ & 0 \end{aligned}$	a	Arrow vertical down and an arrow opposite to the frictional force. Both arrows labelled correctly.	M1 A1	Allow weight / mg / W for the downward arrow and tension / T / 'force in rod' / 'force in tow bar' /'driving force' for the 'upward' arrow
	b	$\begin{aligned} & \left(W_{\mathrm{s}}=\right) 1100 \times 9.81 \times \sin 10^{\circ} \text { or } 1100 \times 9.81 \\ & \times \cos 80^{\circ} \\ & \left(W_{\mathrm{s}}=1874 \mathrm{~N} \text { or } 1900 \mathrm{~N}\right) \end{aligned}$	C1 A0	Allow g instead of value
	c	$\begin{aligned} & \text { force }=1900+300 \\ & \text { force }=2200(\mathrm{~N}) \end{aligned}$	A1	Allow $1870+300=2170$ (N)
	d	$($ distance $=) 120 / \sin 10^{\circ}$ or $691(\mathrm{~m})$ (work done =) 2200×691 work done $=1.5 \times 10^{6}(\mathrm{~J})$	C1 C1 A1	Allow ECF from (c) Allow ECF from an incorrect attempt at first mark.
	e	$\begin{aligned} & (A=) \pi \times \quad \text { or } 1.1 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & 0.006^{2} \\ & (\text { stress }=) \frac{2200}{\pi \times 0.006^{2}} \quad \text { and } 2.0 \times 10^{11}=\frac{\text { stress }}{\text { strain }} \\ & x=4.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow ECF from (c) Allow $x(=F L / E A)=\frac{2174 \times 0.5}{2.0 \times 10^{11} \times 1.1 \times 10^{-4}}$ Allow 2 marks for $1.2 \times 10^{-5} ; 1.2 \times 10^{-2} \mathrm{~m}$ used as radius Allow answer between 4.7 and $5.1 \times 10^{-5}(\mathrm{~m})$
		Total	10	

$\begin{aligned} & 4 \\ & 1 \end{aligned}$	a	$\begin{aligned} & \frac{\Delta v}{\Delta t} \text { and } \Delta t \geq 0.20 \mathrm{~s} \\ & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1 A0	Allow tolerance of $\pm 1 / 2$ a small square $\text { e.g. } \frac{4.7(-0)}{0.48(-0)}=9.79$ Examiner's Comments This question was a "show" type question. Candidates needed to show their working logically. Ideally candidates would state that that the acceleration was equal to the gradient, and then show the substitution of the data values for the gradient calculation. It was expected that candidates would have gained an answer of $9.79 \mathrm{~m} \mathrm{~s}^{-2}$ Exemplar 1 This candidate has clearly demonstrated from $\Delta y / \Delta x$ that the gradient is to be determined. Co-ordinates are substituted into the gradient expression and it is clear that the candidate has used more than half the hypotenuse. The candidate then correctly evaluated the expression to give of $9.79 \mathrm{~m} \mathrm{~s}^{-2}$. and then states that this is about $10 \mathrm{~ms}^{-2}$. AfL Determining a gradient. Candidates should clearly demonstrate the co-ordinates that are used to calculate the gradient. The co-ordinates must lie on the line. A common error is when a candidate uses a data point from a table of results. Candidates should be encouraged to read carefully the quantities from the axes and to pay attention to powers of ten and units. The length of the hypotenuse used for the gradient calculation should be at least half the length of the line. Candidates should clearly show the substitution of the coordinates and then evaluate the answer using the expression: gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. The advantage of this method, it that negative gradients are automatically determined.

			leaves the surface is in the opposite direction and is therefore $4.2 \mathrm{~m} \mathrm{~s}^{-1}$. Candidates then needed to draw a parallel line to the initial line (since the acceleration is still the same). AfL Vector quantities have both a magnitude and a direction.
	$\begin{aligned} & \text { area under the graph } \frac{1}{2} \times 4.2 \times 0.43 \\ & = \end{aligned}$	C1	Allow ECF from (i) and (ii) Allow use of equation of motion: e.g. $s=\frac{4.2^{2}}{2 \times 9.81} \quad$ or $s=(-4.2 \times 0.43)+\quad \frac{\mathbf{1}}{\mathbf{2}}$ $\times 9.81 \times 0.43^{2}$ (numbers must be seen) Allow use of loss of $\mathrm{KE}=$ gain in PE Allow one significant figure Note 0.84 for $\Delta t=0.40$ to 0.97 for $\Delta t=0.46$ Examiner's Comments There were many methods in which candidates could gain the marks in this question. It was helpful for clear methods to be demonstrated. The simplest was to determine the area under the velocity-time graph. Candidates also used the equations of uniform motion. Common errors seen included the incorrect velocity and when using the equations of motion but being confused about negative signs. Examiners on this occasion allowed an answer of 0.9 m which is one significant figure. Since the data used is to two significant figures, the final answer should also be to two significant figures. AfL The area under a velocity-time graph is displacement.
	Line will curve / be non-linear OR (magnitude of) gradient of line decreases (with increase in time) (Line will end with) a lower maximum/final velocity or hit the ground after a longer time	B1 B1 B1	Allow sketch or gradient decreases / changes Not gradient is smaller / less steep / shallower / lower Allow ball will have a lower maximum/final velocity or hit the ground after a longer time)

3.3 Work Energy and Power

			Examiner's Comments Candidates found this question challenging. Many candidates answered the question in terms of air resistance and terminal velocity.	

3.3 Work Energy and Power

		Speed determined by dividing length of car or interrupt card by time taken (to pass through light gate). Mass of car determined using scales and $K E=1 / 2 \times$ mass \times speed 2.	B1 B1	
		Total	6	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & \text { (k.e. }=) E=5.0 \times 10^{6} \times 1.6 \times 10^{-19} \\ & v=\sqrt{ }(2 E / m) \text { or }=\sqrt{ }\left(2 \times 8.0 \times 10^{-13} / 6.6 \times\right. \\ & \left.10^{-27}\right)=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ $\begin{aligned} & p(=m v)=6.6 \times 10^{-27} \times 1.6 \times 10^{7} \\ & \text { giving } p=1.1 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	$E=8(.0) \times 10^{-13} \mathrm{~J}$ or $\left(E=p^{2} / 2 m\right.$ so) $p=\sqrt{ }(2 m E)$ Note: A value of $v=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right)$ automatically scores both C1 marks even if the calculation for E is not shown or $p\left(=\sqrt{ }(2 m E)=\sqrt{ }\left(2 \times 6.6 \times 10^{-27} \times 8.0 \times 10^{-13}\right)\right.$ giving $p=1.0 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ Full substitution of values must be shown and answer (if calculated) must be correct Examiner's Comments This question provided an excellent opportunity for candidates to produce immaculate responses: identify the physics involved, select and write down the correct formula, do the necessary conversion (MeV to J), rearrange the formula, substitute correctly and then write the final response in standard form to a correct number of significant figures. Some of the common errors were: - forgetting to convert 5.0 MeV into J - not showing a full substitution of values (which is necessary for a 'show that' question) - not calculating the response to more than 1 s.f. (which is necessary for a 'show that' question).
		Total	3	
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	i	$\begin{aligned} & \left(E_{k}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 0.16 \times 30.7^{2}\right) \\ & E_{\mathrm{k}}=75(\mathrm{~J}) \end{aligned}$	B1	Possible ECF from (iii) Examiner's Comments This was generally well answered.
	ii	$\left(E_{p}=m g h=0.16 \times 9.81 \times 2.0=\right) 3.1(\mathrm{~J})$	B1	Allow $\left(E_{k}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 0.16 \times 6.3^{2}\right)=3.2(\mathrm{~J})$ Examiner's Comments Most candidates correctly calculated the gravitational potential energy although some weaker candidates used the answer from (i).
	ii	$\text { (i) }- \text { (ii); }(75-3.1) \text { or }\left(E_{k}=\frac{1}{2} \times 0.16 \times 30^{2}\right)$ kinetic energy $=72(\mathrm{~J})$	B1	Possible ECF from (i) and (ii) Note: Answer is $63(\mathrm{~J})$ when $28\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ is used from (ii) Examiner's Comments

3.3 Work Energy and Power

3.3 Work Energy and Power

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
explanation \\
Examiner's Comments \\
This question required knowledge and understanding of Newton's third law. Although many candidates were familiar with the law, they could not adequate describe or explain the force on the asteroid. There were vague answers such as 'The force goes up proportionally and then decreases exponentially'. Some answers also focused unnecessarily on the transfer of momentum or kinetic energy but it was often the succinct answers such as 'The force on the asteroid is equal in magnitude but in opposite direction to the force F; NIII law' that scored full marks.
\end{tabular} \\
\hline \& \& Total \& 6 \& \\
\hline \& a \& \begin{tabular}{l}
Photon(s) mentioned \\
One-to-one interaction between photons and electrons \\
Energy of photon is independent of intensity / intensity is to do with rate (of photons / photoelectric emission) / photon energy depends on frequency / energy of photon depends on wavelength / photon energy \(\propto\) frequency / photon energy \(\propto 1 / \lambda\) \\
energy of uv photon(s) > work function (of zinc) / frequency of uv > threshold frequency
\end{tabular} \& B1
B1
B1

B1 \& | Allow 'photon absorbed by an electron' |
| :--- |
| Allow: collide etc. for interaction |
| Allow $E=h f$ or $E=h c / \lambda$ |
| Allow energy of light photon(s) < work function (of zinc) / frequency of light > threshold frequency |
| Allow \geq instead of $>$ here |
| Not $f>f_{0}$ |
| Examiner's Comment |
| Many candidates wrote enthusiastically about photoelectric effect and understood the significance of work function energy (or threshold frequency) and the one-to-one interaction between photon and an electron. Some candidates did not mention 'photons' and this limited the marks they could acquire. The role of intensity was less understood. Many candidates thought it was linked to 'the number of photons' or 'the amount of electrons emitted. The important term rate of the missing ingredient. Topend candidates gave eloquent answers, typified by the response: 'intensity of visible light only affects the rate of photons incident on the plate but not the energy of each photon'. Two common misconceptions were: |
| - Photons were emitted from the negative plate. |
| - Confusing threshold frequency and work function energy. |

\hline \& b \& $$
\begin{aligned}
& \phi=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2.9 \times 10^{-7}} \text { or } 6.86 \times 10^{-19}(\mathrm{~J}) \\
& \underset{19}{E}=5.1 \times 1.60 \times 10^{-} \text {or } 8.16 \times 10^{-19}(\mathrm{~J})
\end{aligned}
$$ \& C1

C1 \& Note: Using 5.1 and not 8.16×10^{-19} cannot score this mark or the next mark

\hline
\end{tabular}

3.3 Work Energy and Power

				candidates performed the steps of their calculation randomly across the answer space, making it hard to determine their method.
	ii	$\begin{aligned} & (W=P t \text { so } 8.6=0.050 t) \\ & t=8.6 / 0.050=170(\mathrm{~s}) \end{aligned}$	A1	ECF (b)(i) for incorrect W Examiner's Comments Almost all candidates gained the mark for 3(b)(ii), as any incorrect answer to 3(b)(i) was accepted with error carried forward (ECF).
		Total	4	
		At point P: path difference between slits and screen is a whole / integer number of wavelengths (for constructive interference) At point Q : path difference between slits and screen is an odd number of half wavelengths (for destructive interference)	B1	Allow $\mathrm{n} \lambda$ or λ Not phase difference Allow $\left(n+\frac{1}{2}\right) \lambda$ Not $\lambda / 2$ Examiner's Comments It was expected that candidates would describe the path difference in terms of the wavelength. Candidates often realised that the bright line would have a path difference of an integer number of wavelengths, this was often written as $n \lambda$. To explain the dark line many candidates struggled with the appropriate relationship in terms of λ or did not state an odd number of half wavelengths.
		$x=4.22 \mathrm{~mm}$ 1 $\begin{aligned} & \lambda=\frac{4.22 \times 10^{-3} \times 0.56 \times 10^{-3}}{4.50} \\ & 5.25 \times 10^{-7} \mathrm{~m}^{4.50} \end{aligned}$ $\begin{aligned} & \frac{0.02}{4.5} \quad \text { or } \quad \frac{0.02}{0.56} \quad \text { or } \frac{0.2}{42.2} \\ & \left(\frac{0.02}{4.5}+\frac{0.02}{0.56}+\frac{0.2}{42.2}\right) \times 100=4.48 \% \end{aligned}$ Alternative max / min method: $\begin{aligned} & 2_{\lambda_{\max }}=\frac{4.24 \times 10^{-3} \times 0.58 \times 10^{-3}}{4.48}=5.49 \times 10 \\ & \text { and/or } \\ & \lambda_{\text {min }}=\frac{4.20 \times 10^{-3} \times 0.54 \times 10^{-3}}{4.52}=5.02 \times 10^{-} \\ & \frac{\Delta \lambda}{\lambda} \times 100=4.4 \% \text { or } 4.6 \% \end{aligned}$	C1 C1 A1 C1 A1 A A B1 B1	Note $\mathbf{x}=42.2 \mathrm{~mm}$ or $4.2 \times 10^{-2} \mathrm{~m}$ scores zero Note $x=3.84,4.77 \times 10^{-7} \mathrm{~m}$ may score $\max 2$ Allow 4\% or 5\% with evidence of working Ignore significant figures Examiner's Comments Although candidates correctly identified the correct equation, a large number of candidates did not determine the fringe spacing correctly. Some candidates used 42.2 cm , others divided 42.2 cm by 11,15 or 20 . Furthermore, some candidates did not convert the slit separation from millimetres to metres. Candidates were able to identify the equation from the Data, Formulae and Relationships Booklet. Most candidates were able to determine at least one percentage uncertainty for the individual quantities correctly. Mistakes were

3.3 Work Energy and Power

3.3 Work Energy and Power

5	a		Graph correct shape and always positive and suitable scale on kinetic energy axis. Maxima occur at zero displacement times.	B1 B1	
	b		Period from graph $=500 / 3.5=143 \mathrm{~ms}$ $\begin{aligned} & \text { Acceleration }=\omega^{2} \mathrm{~A}=(2 \pi / 0.143)^{2} \times 0.006= \\ & 12\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	C1 A1	
			$\begin{aligned} & \mathrm{KE}=0.5 \times 0.005 \times(2 \pi / 0.143 \times 0.006)^{2} \\ & \mathrm{KE}=1.7 \times 10^{-4}(\mathrm{~J}) \end{aligned}$	C1 A1	
			Total	6	
5			Parallel and equidistant field lines. Field direction is correct (from left to right).	B1 B1	Note: Field lines must be right angle to the plates.
		ii ii ii	$\begin{aligned} & \text { work done }=1500 \times 1.6 \times 10^{-19} \times 1.2 \times 10^{-2} \\ & =2.88 \times 10^{-18}(\mathrm{~J}) \\ & \frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2}=\frac{1}{2} \times 9.11 \times 10^{-31} \times\left(5.0 \times 10^{6}\right)^{2} \\ & \text { speed }=4.3 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Correct use of: final KE = initial KE - work done.
			Total	5	
5			$\begin{aligned} & (\text { surface area }=) 4 \pi \times\left(1.4 \times 10^{9}\right)^{2} \text { or } 2.46 \\ & \times 10^{19}\left(\mathrm{~m}^{2}\right) \\ & \text { (intensity } \left.=\frac{P}{4 \pi r^{2}}\right) \\ & \text { intensity }=\frac{2.7 \times 10^{27}}{4 \pi \times\left(1.4 \times 10^{9}\right)^{2}} \\ & \text { intensity }=1.1 \times 10^{8}\left(\mathrm{~W} \mathrm{~m}^{-2}\right) \end{aligned}$	C1	Allow $2.5 \times 10^{19}\left(\mathrm{~m}^{2}\right)$ Note: Using $\pi \times\left(1.4 \times 10^{9}\right)^{2}$ is wrong physics; hence no marks in this show question Examiner's Comments This was a demanding question designed for middle and top-end candidates. The radiant intensity is equal to the power transmitted per unit cross-sectional area. The area being that of a sphere of radius $1.4 \times 10^{9} \mathrm{~m}$. The equation $4 \pi R^{2}$ was appropriate here. The common errors, mainly from the lowscoring candidates, were using πR^{2} and ${ }^{\frac{4}{3}} \pi R^{3}$. All the key steps in the calculations had to be structured well for
		ii	$\begin{aligned} & E=\frac{3.00 \times 10^{8} \times 6.63 \times 10^{-34}}{5.0 \times 10^{-7}} \\ & E=4.0 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	C1	Note: Answer to 3 SF is $3.98 \times 10^{-19}(\mathrm{~J})$ Allow $4 \times 10^{-19}(\mathrm{~J})$ without any SF penalty Examiner's Comments Most candidates were familiar with the equation for the energy of the photon. Answers were generally well-structured and calculations were undertaken without much error in either rearranging the equation or powers of ten. The answer to two significant figures was $4.0 \times 10^{-19} \mathrm{~J}$, as in the general rule with such answers, $4 \times 10^{-19} \mathrm{~J}$ was acceptable without any significant figure penalty.

3.3 Work Energy and Power

	ii	(number per second $=\frac{2.7 \times 10^{27}}{4.0 \times 10^{-19}}$) number per second $=6.8 \times 10^{45}\left(\mathrm{~s}^{-1}\right)$	B1	Possible ECF from (b)(ii) Examiner's Comments This was a successful end for the top-end candidates, who correctly divided the total output power of Procyon of 2.7×10^{27} W by the energy of each photon from (b)(ii). The two common errors were dividing the intensity by the photon energy and changing the photon energy from joule (J) to electron-volt (eV).
		Total	5	
$\begin{aligned} & 5 \\ & 7 \end{aligned}$	i	$\begin{aligned} & 250 \times 60=15000 \mathrm{~J} \\ & \text { energy }=\frac{15000}{0.65}=2.3 \times 10^{4}(\mathrm{~J}) \end{aligned}$	C1 A1	
	ii	$\begin{aligned} & \text { drag force }=0.4 \times 6.0^{2}=14.4 \mathrm{~N} \\ & \text { forward force }=\text { power } / \text { velocity }=250 / 6.0= \\ & 41.7 \mathrm{~N} \\ & \text { acceleration }=\frac{41.7-14.4}{85}=0.32 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	C1 C1 A1	
		Total	5	
$\begin{aligned} & 5 \\ & 8 \end{aligned}$	i	$(K E=) 210 \times 1.60 \times 10^{-19}(\mathrm{~J}) \text { or } 3.36 \times 10^{-17}$ (J) $\begin{aligned} & 1 / 2 \times 9.11 \times 10^{-31} \times v^{2}=3.36 \times 10^{-17} \\ & v=8.6 \times 10^{6}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	C1 C1 A1 A	Note using $K E=210(\mathrm{~J})$ is wrong physics $X P$ Note the answer must be to more than 1 SF Examiner's Comments This was not a straight forward question but most candidates demonstrated excellent knowledge and application of physics here. The conversion of 210 eV was often done correctly. The K.E. equation was used successfully to show the final speed of the electrons to be about $8.6 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$. The exemplar 11 below shows a model response from a top-end candidate. Exemplar 11

procedure and analysis

There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear, relevant and substantiated.

Level 2 (3-4 marks)
Clear determination of input energy and procedure, but no analysis
or Clear analysis but limited determination of input energy and/or limited procedure
or Attempted determination of input energy, basic procedure, and an attempt at analysis

There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.

Level 1 (1-2 marks)

A limited selection from the scientific points worthy of credit.
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit

Candidates can gain full credit for investigating the efficiency of either:
Method 1(M1): GPE (nmgh) to energy conversion in LED (Pt) or
Method 2(M2): GPE ($n m g h$) to energy stored in capacitor $(1 / 2 \mathrm{CV} 2$
or $1 / 2$ Q2/C)
L1 maximum for any answers which do not use GPE as input energy

Indicative scientific points may include:

Determination of input energy

- record the number of inversions, n
- (use electronic / top pan balance to) measure mass of magnet m
- (use mm ruler to) measure tube length I_{t} and magnet length $/ \mathrm{m}$
- calculate $h=I_{\mathrm{t}}-I_{\mathrm{m}}$
- calculate (GPE $=$) $n m g h$

Procedure

- invert torch n times (with torch switched off)
- make sure that the magnet falls the full height h between inversions
- M1 switch torch on and (use stopwatch to 0.1 s to) measure time t taken until LED goes out (use video with timer for greater accuracy)
- M1 use a darkened room or view LED through tube
- M2 (use voltmeter across capacitor to) measure final p.d. V_{f}
- M2 (with coulombmeter) measure final charge Q_{f} stored by capacitor
- repeat experiment for different n

Analysis of efficiency

- M1 calculate $W=P t$ where $P=50 \mathrm{~mW}$
- M2 calculate $W=1 / 2 C V_{f}^{2}$ or $1 / 2 Q_{\mathrm{f}}{ }^{2} / \mathrm{C}$
- calculate efficiency $=W / n m g h$
- compare efficiency values for different n
- plot suitable graph e.g. efficiency against n / W against $n m g h$
- plot t against $n(\mathrm{M} 1) / V^{2}$ or Q^{2} against $n(\mathrm{M} 2)$ with justification
- discuss shape / gradient of graph

Examiner's Comments

In level of response questions like 3(c), candidates must remember to refer closely to the stem of the question when planning their extended answer to make sure that they are

The challenge in this question was to design an experiment that would yield results leading to a valid conclusion. Candidates could gain full credit for investigating the efficiency of gravitational potential energy (GPE) to either:

- energy conversion in the LED (power x time) or
- energy stored in the capacitor $\left(1 / 2 \mathrm{CV}^{2}\right.$ or $\left.1 / 2 \mathrm{Q}^{2} / \mathrm{C}\right)$

Candidates were then expected to describe how the efficiency would be calculated, and how they could tell whether the efficiency depended on the number of times the torch is turned or inverted, n.
Many candidates were able to describe a valid graphical method, usually plotting efficiency against n , or output energy against input energy. Some candidates plotted time against number of inversions, which was able to score maximum credit provided that they clearly explained that t and n were proportional to output and input energy respectively.
The best responses were those where candidates had not just stated what to plot but had gone on to describe and explain the expected shape of the graph and what its gradient would show.

Exemplar 4

$$
\begin{aligned}
& \text { Deteraing the length } \text { h vering a rumer at eye. } \\
& \text { lemel ho nodure paxallac. Meabue. He muss of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cormula } E=m g h \text { lo fint the granitalional }
\end{aligned}
$$

$$
\begin{aligned}
& \text { intemals of wuber of Luans, the hav long } H_{2} \\
& \text { LED is lis up for and use } P \text {. }=W \text { the find } \\
& \text { Hhe work done by the LED. And the efficieny. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { anst plat a grapoh of efficiang agoin, nit. number. } \\
& \text { of duans ad draw a fine of best fit. If. it }
\end{aligned}
$$

Exemplar 4 shows a typical Level 2 response. The candidate is correctly trying to find the efficiency of GPE converted to electrical energy in the torch, but their response lacks the clarity and detail needed for a Level 3 response. Also, their method will not yield correct results because they have

- not realised that GPE increases with the number of turns, so they need to use the formula GPE = nmgh.
- not specified that the length h is the distance that the magnet falls, rather than the length of the tube.
- not made clear which is the input and which the output energy in the (correct) efficiency formula.
- used incorrect graphical analysis for their graph of efficiency against n . We want to discover whether efficiency depends on n, not demonstrate that efficiency increases proportionally to n, which is impossible.

3.3 Work Energy and Power

3.3 Work Energy and Power

			light gate. For Sofely fle be land in sud os nof 10 sh ...land on somones foot. This also measuring x mach eazier of ...eprual to the harizantan distence of ...edge of the leble to He crailand pecurured using a ruter- if taken to fall \rightarrow kept conslert …pant wha u is platted \cdots on a grean it an an to be lneor and pass thro arign. In the first paragraph, the candidate has made clear that the time of flight is constant and goes on to explain why towards the end of the response. This supports the prediction that $v \propto x \ln$ addition, the candidate takes time to explain how to obtain data for both the horizontal velocity and horizontal distance. It was pleasing to see light gates and motion sensors being employed, with the best answers explaining how to use the data provided by the sensors to calculate the velocity of projection. The exemplar response also includes the correct analysis. There is a graph of v against x and the resulting best fit straight line through the origin supports the idea that these two variables are directly proportional. Too many candidates did not mention the crucial statement about the line going through the origin, limiting their response to a high L1 or low L2.
b	vertical component $=30.0 \sin \left(70^{\circ}\right)$ or 30.0 $\cos \left(20^{\circ}\right)$ vertical component $=28.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	Allow 2 SF answer of 28
	Evidence of $v^{2}=u^{2}+2$ as and $v=0$ or $g h=1 / 2 u^{2}$	C1	Allow v and u interchanged; a and g interchanged Allow use of candidate's answer for (a)(i) at this point Ignore sign Allow ${ }^{\left.h=\frac{28^{2}}{2 \times 9.81} \text { or }(30 \sin (70))^{2 /(2 \times 9.81)}\right) ~}$ No ECF from (a)(i) for the second mark

3.3 Work Energy and Power

		$h=40.5$ (m)		
	$\begin{array}{\|c} i i \\ i \\ i \end{array}$	The ball has horizontal motion / velocity (AW)	B1	Allow idea of horizontal e.g. sideways, forwards Not: 'moving' unqualified
	i	$\begin{aligned} & \text { (horizontal velocity }=) 30.0 \cos 70^{\circ} \text { or } \\ & 10.2 \ldots .\left(\mathrm{m} \mathrm{~s}^{-1}\right) \text { or } 30.0 \sin 20^{\circ} . \\ & E_{\mathrm{k}}=1 / 2 \times 0.057 \times 10.26^{2} \\ & E_{\mathrm{k}}=3.0(\mathrm{~J}) \end{aligned}$	C1	Allow 1 SF answer Not 22 (J), $v=28$ used Not 23 (J), $v=28.2$ used Not 140 (J), $v=70$ used Examiner's Comments Part (i) was particularly well answered by 95% of all candidates. Nine out of ten candidates scored full marks in part (a)(ii), as they remembered that the question asks to show that the maximum height is around 40 m . Working for this type of question is essential. In part (a)(iii), three quarters of all candidates correctly talked about the ball still having a horizontal velocity (which wasn't zero) and therefore still possessing some KE. The key to this part (a)(iv), remembered by most candidates, was to use the horizontal component of velocity to find the KE at the maximum height. Some used the initial speed and others used the initial vertical velocity component found in part (a)(i).
		Total	12	
6		Any THREE from: Atoms of metal vibrate (about fixed points) Water molecules have translational KE The motion of the water molecules is random Metal atoms and water molecules have the same KE	$\begin{gathered} \text { B1x } \\ 3 \end{gathered}$	Allow particles for atoms / molecules throughout Allow idea that water particles move past each other Not idea that the water molecules have more KE than metal atoms
	ii	(Eneater =) $200 \times 10 \times 60$ or 120000 (J)	C1 C1	

3.3 Work Energy and Power

		$\begin{aligned} & \left(E_{\text {water }}=\right) 0.5 \times 4200 \times 40 \text { or } 84000(\mathrm{~J}) \\ & (\text { energy transferred }=120000-84000) \\ & \text { energy transferred }=3.6 \times 10^{4}(\mathrm{~J}) \end{aligned}$	A1	
		Total	6	
$\begin{aligned} & 6 \\ & 3 \end{aligned}$	i	$4.1 \mathrm{eV}==4.1 \times 1.6 \times 10^{-19} \text { or } 6.56 \times 10^{-19}$ J OR $\begin{aligned} & E_{k}=6.63 \times 10^{-34} \times 1.2 \times 10^{15}-\phi \\ & E_{k}=6.63 \times 10^{-34} \times 1.2 \times 1015-6.56 \times \\ & 10^{-19} \end{aligned}$ $E_{k}=1.39 \times 10^{-19} \mathrm{~J}$ $v=\sqrt{\frac{2 \times 1.39 \times 10^{-19}}{9.11 \times 10^{-31}}}=\sqrt{3.06 \times 10^{11}}$ $5.536 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$	C1	Allow $f_{0}=9.9 \times 10^{14} \mathrm{~Hz}$ Allow $E_{k}=6.63 \times 10^{-34} \times\left(1.2 \times 10^{15}-9.9 \times 10^{14}\right)$ Allow $1.4 \times 10^{-19} \mathrm{~J}$ 3.06×10^{11} scores three marks Examiner's Comments Good candidates clearly showed the individual steps in this calculation, e.g. the conversion of electron-volt to joule for the work function, the energy of the photon calculated. It was important that candidates demonstrated that they had substituted the mass of the electron from the data booklet and correctly evaluated the square root term. Examiners expected to see $5.536 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ for full credit so that it was clear that candidates had correctly calculated the powers of ten. Exemplar 9 In line 3 of the candidate's working, there is a rearrangement of the equation given at the beginning of the question. There is then clear substitution of the energy of a photon which was calculated in line 1 and the work function which had been converted from

Level 2 (3-4 marks)

Clear description of how pattern changes and explanation of pattern changes and qualitatively explains link between de Broglie wavelength and potential difference or
limited description of how pattern changes and
quantitatively explains link between de Broglie wavelength and potential difference.

There is a line of reasoning presented with some structure.
The information presented is in the most-part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited description of how pattern changes and limited attempts to explain qualitatively the link between de Broglie wavelength and potential difference or
qualitatively explains link between de Broglie wavelength and potential difference.

The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.

0 marks

No response or no response worthy of credit.

- Electrons gain greater energy
- Electrons have a greater speed
- Electrons have a greater momentum
- Implies smaller wavelength
- Smaller wavelength means less diffraction
. Shorter wavelength gives shorter path differences between areas of constructive and destructive interference

Quantitative explanation of pattern changes in terms of de Broglie wavelength and potential difference

- $e V=\frac{1}{2} m v^{2}$
- $p=m v$
- $\quad v^{2} \alpha V$ or $p^{2} \alpha V$
- $\lambda=\frac{h}{p}$
or $\quad \lambda \alpha \frac{1}{v}$
- $\lambda=\frac{h}{\sqrt{2 m e V}}$
or $\quad \lambda \propto \frac{1}{\sqrt{V}}$

Examiner's Comments

This question tested an understanding of electron diffraction. Many candidates gave a good qualitative explanation of how the pattern would change. High achieving candidates clearly demonstrated how the de Broglie wavelength λ was related to the potential difference V by equating the energy $\mathrm{e} V$ to kinetic energy, then using the definition of momentum and the de Broglie wavelength. Some candidates confused speed v with potential difference V. Many candidates gave a good qualitative explanation. Many candidates did not state that the rings would become brighter.

AfL

Candidates should be able to describe how to use light gates. In particular, candidates should be able to indicate the measurements that are needed to determine speed and acceleration. Candidates should state that the light gates should be connected to a timer or data-logger.

AfL

When analysing experimental data, candidates should be able to determine appropriate graphs to plot which will give a straight line (if the given relationship is true). Candidates should also be able to describe how unknown quantities may be determined using the gradient and / or y-intercept.

3.3 Work Energy and Power

				There is some confusion between the equations to use for photoelectric effect and the equations to use when considering the de Broglie wavelength. For the de Broglie wavelength, a common misconception is to relate the energy to wavelength by the equation for the energy of a photon, $E=\frac{h c}{\lambda}$	
		Total	6		
	a	$\mathrm{t}=0$ to 1.5 s , constant force (of 30 N) causes constant acceleration t = 1.5 to 4.0 s zero (resultant) force so constant speed	B1 B1	or reference to N 2	
				or reference to N1	
		$\text { acceleration }=30 / 65=0.46\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$$\begin{aligned} & \text { speed } v \text { at } 1.5 \mathrm{~s}=\mathrm{at}=0.46 \times 1.5=0.69(\mathrm{~m} \\ & \left.\mathrm{s}^{-1}\right) \\ & \text { distance }=1 / 2 \mathrm{at}^{2}+\mathrm{vt}^{\prime}=0.23 \times 1.5^{2}+0.69 \times \\ & 2.5 \\ & \mathrm{~s}=2.24 \mathrm{~m} \end{aligned}$	M1		
		A1	ecf acceleration value		
		C1	ecf acceleration and speed values		
		A1			
	b		```power lost in circuit = 30 }\times0.1 = 99(w) mechanical power =640 x 0.70=448(W) electrical power input = 28 * 30=840(W) input power to motor = 741 (W) efficiency = 448 / 741 = 0.60 or 60%```		C1 Apply ecf rule as appropriate
				C1	
				C1	allow 3 marks for 53\%
		C1			
		C1			
		A1			
		Total	12		
$\begin{aligned} & 6 \\ & 7 \end{aligned}$		Level 3 (5-6 marks) Clear description and correct calculations leading to value of total energy (must include the negative sign) There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and some correct calculations or Correct calculations (including the negative sign) There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Description - Orbit above the equator / equatorial orbit - Orbit from west to east/same direction of orbit as Earth's rotation - Orbital period is 24 hours / 1 (sidereal) day /23hrs 56 mins (4 s) - Orbit is circular / above the same point on the Earth Calculation - $E=(-) \frac{G M m}{r}$ - $E=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 2500}{4.22 \times 10^{7}}$ $=(-) 2.4 \times 10^{10} \mathrm{~J}$ - $V=\frac{2 \pi r}{T} \omega r$ - $V=\frac{2 \pi \times 4.22 \times 10^{7}}{24 \times 3600}=3.07 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ - $E=\frac{1}{2} m v^{2}$ - $E=\frac{1}{2} \times 2500 \times\left[3.07 \times 10^{3}\right]^{2}=1.2 \times 10^{10} \mathrm{~J}$	

		Level 1 (1-2 marks) Limited description or Limited calculations The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- Total energy $=-2.4 \times 10^{10}+1.2 \times 10^{10}=-1.2 \times 10^{10} \mathrm{~J}$ - Allow full credit for algebraic proof using $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$, $E=(-) \frac{G M m}{r}, E=\frac{1}{2} m v^{2}$ and total energy $=\mathrm{KE}+\mathrm{PE}$ Allow higher order answers in terms of Lagrange's Identity Examiner's Comments This part explored multiple ideas about geostationary orbits. It was accessible to most candidates, many of whom calculated the magnitude of the GPE correctly yet forgot that this value must be negative. Almost all candidates forgot that Gravitational Potential Energy is negative.
		Total	6	
	i	$\begin{aligned} & \text { GPE }=(-) \text { GMm } / r \\ & \text { GPE }=(-) 6.67 \times 10^{-11} \times 2 \times 10^{30} \times 810 / 1.5 \\ & \times 10^{11} \\ & \text { GPE }=(-) 7.2 \times 10^{11}(\mathrm{~J}) \end{aligned}$	C1 C1 A0	Mark is for full substitution, including 6.67×10^{-11} for G
	ii	$\begin{aligned} & v=2 \Pi r / T=2 \Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7}(= \\ & \left.29.8 \mathrm{~km} \mathrm{~s}^{-1}\right) \\ & \mathrm{KE}=1 / 2 m v^{2}=0.5 \times 810 \times\left(29.8 \times 10^{3}\right)^{2} \\ & \mathrm{KE}=3.6 \times 10^{11}(\mathrm{~J}) \end{aligned}$	C1 M1 A1	Allow proof by algebraic method for full marks e.g. $m v^{2} / r=$ GMm/r ${ }^{2}$ so $m v^{2}=G M m / r$ Therefore KE/GPE $=1 / 2 m v^{2} /(G M m / r)=1 / 2$
	ii	$\begin{aligned} & \text { total energy }=(-)\left(7.2 \times 10^{11}-3.6 \times 10^{11}\right) \\ & \text { total energy }=(-) 3.6 \times 10^{11}(\mathrm{~J}) \end{aligned}$	M1 A0	working must be shown; ECF (i) and (ii)
		Total	6	
		Level 3 (5-6 marks) Clear diagrams and procedure and measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) A diagram, some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \\ 6 \end{gathered}$	Indicative scientific points may include: Diagram and procedure - labelled diagram - correct circuit diagram - description of procedure - use of cushion in case load falls - repeats experiment. Measurements - use of balance to measure load - use of ruler to measure height - use stopwatch to measure time - use of ammeter to measure current

some evidence.

Level 1 (1-2 marks)

Limited procedure and limited
measurements or limited analysis

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- use of voltmeter to measure p.d.

Analysis

- equation to determine input power/energy (IV/IVt)
- equation to determine output power/energy ($\mathrm{mgh} / \mathrm{t}$ or $m g h$)
- equation to determine efficiency
- use of gradient of appropriate graph

Examiner's Comments

This question is assessing candidates' abilities to plan an investigation. The question is set to help candidates e.g. "lift light loads" should have given the hint of gravitational potential energy.

The stem of the question indicates that a suitable diagram should be drawn. Many candidates did not label their diagrams, or the diagrams were not workable. It was expected that there would be a workable circuit diagram with appropriate measuring instruments to determine the input power or energy; correct circuit symbols should be used. There also needed to be a diagram indicting how the useful power or energy could be determined. See Exemplar 1.

When answering planning questions, candidates should identify the measurements that need to be taken and indicate appropriate measuring instruments.

Candidates also needed to explain how the data would be analysed. This required them to give the appropriate equations using their measurements to determine the input power/energy, the output power/energy and the efficiency. Good candidates suggested the plotting of an appropriate graph and explained how the efficiency could be determined from the gradient.

Exemplar 1

3.3 Work Energy and Power

3.3 Work Energy and Power

		0 marks No response or no response worthy of credit.		
		Total	6	
$\begin{aligned} & 7 \\ & 1 \end{aligned}$	i	$\begin{aligned} & E=\frac{1}{2} k x^{2} \text { or } E=m g h \text { or } \\ & 0.080 \times 9.81 \times 0.20 \text { or }{ }^{\frac{1}{2}} \times 60 \times x^{2} \\ & \\ & 0.080 \times 9.81 \times 0.20=\frac{1}{2} \times 60 \times x^{2} \\ & x=0.072(\mathrm{~m}) \end{aligned}$	C1 C1 A1	
	ii	Time of flight is independent of speed/AW 1 Because distance of fall is the same and initial velocity vertically is zero / velocity is horizontal at \mathbf{X} D increases as speed at \mathbf{X} increases because the time of flight is constant/AW D is directly proportional to speed at \mathbf{X}	B1 B1 M1 A1	Allow algebraic answers that assume initial vertical velocity is zero/velocity is horizontal at X . Allow d = vt idea " D is directly proportional to speed at \mathbf{X} because the time of flight is constant" scores 2. Examiner's Comments This part showed that many candidates thought that the time of flight of the car depended on the take-off speed of the car. Since the car is travelling horizontally the time of flight only depends on the height of the car above the horizontal track.
		Total	7	
$\begin{aligned} & 7 \\ & 2 \end{aligned}$	i	tension $=850 \mathrm{~kg} \times 9.81=8300 \mathrm{~N}$	B1	
	ii ii ii ii	```work done = mgh = 850 * 9.81 }\times1 work done = 100 kJ output power = 100 \times 103/40(=2501 W) input power (= 2501 / 0.6) = 4200 (W)```	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		Suggestion to reduce heat losses through friction in moving parts e.g. oil, bearings Use a stiffer / stronger cable to reduce energy loss through stretching	B1 B1	
		Total	7	
$\begin{aligned} & 7 \\ & 3 \end{aligned}$	i	$A \rightarrow \mathrm{~m}^{2} \text { and } \rho \rightarrow \mathrm{kg} \mathrm{~m}^{-3}$ $P \rightarrow \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}$	M1 M1	Note: No mark for $v \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$ since units are in (a) Allow $P \rightarrow \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~m} \mathrm{~s}^{-1}$ (from $P=F v$ or $P=$ Work done $/ \mathrm{t}$) Note: clear working includes $\mathrm{m}^{3} \mathrm{~s}^{-3}$ seen.

		Clear working to show units are equivalent on either side of equation	A1	Examiner's Comments Exemplar 5 \therefore The equation is homogenous Candidates generally made an excellent attempt at this question, although for many the working was difficult to follow. In the exemplar, the candidate has made it very clear that they are considering the two sides of the equation separately and have reduced each unit to its S.I. base units as required by the question. The use of square brackets to distinguish between a quantity rather than a base unit was helpful.
	ii	$\begin{aligned} & 1.2 \times 10^{6}=1 / 2 \times 1.3 \times A \times 8.03 \text { or } A=3600 \\ & \left(m^{2}\right) \text { seen } \end{aligned}$ $L=34(\mathrm{~m})$	C1	Allow volume s ${ }^{-1}=28846\left(\mathrm{~m}^{3}\right)$ using $3.75 \times 10^{4}\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$ or $29231\left(\mathrm{~m}^{3}\right)$ using $3.8 \times 10^{4}\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$ Allow ECF from (a) Note: $3.4 \times 10^{n}(\mathrm{~m})$ scores 1 for PoT error. Examiner's Comments About two thirds of candidates got full marks on this item. By substituting the values into the formula, the area required is approximately $3600 \mathrm{~m}^{2}$. Some candidates did not read the question and instead of thinking about area swept out being a circle, they took it to be square, giving the length of the blade to be $\sqrt{3600}=60 \mathrm{~m}$.
	$\begin{aligned} & \text { ii } \\ & i \end{aligned}$	(output power =) $0.42 \times 1.2 / 0.504(\mathrm{MW})$ $(N=50 / 0.504=99.2)$ $N=100$	C1	Allow: $50 \times 10^{6} / 0.42=119 \mathrm{MW}$ and then $119 / 1.2$ Not 99 Note: answer of 99.2 scores 1 mark max Examiner's Comments Rather more candidates got this item right. Some candidates mis-converted the unit and got values that could not be right i.e. 1 or 10^{6} yet the majority arrived at 99.2 and correctly stated that the minimum number of required turbines must be 100 and not 99.
		Total	7	

3.3 Work Energy and Power

	i	$\begin{aligned} & (F=m a=) 190 \times 10^{3}=2.1 \times 10^{5} \mathrm{a} \\ & a=0.90\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	M1 A0	$\mathrm{a}=0.905$ to 3 SF
	ii	$\begin{aligned} & \left(v^{2}=u^{2}+2 \text { as gives }\right) 36=2 \times 0.90 \times s \\ & s=20(\mathrm{~m}) \end{aligned}$	C1 A1	Allow any valid suvat approach; allow ECF from (i) Note using a $=1$ gives $\mathrm{s}=18(\mathrm{~m})$
	ii	$1 P=F v$ One correct calculation $\begin{aligned} & \text { e.g. } F=100 \times 10^{3} \text { and } v=42 \text { gives } P=4.2 \\ & \times 10^{6}(\mathrm{~W}) \\ & F v=\text { constant } \\ & \mathbf{2} \quad(P=\mathrm{VI}=4.2 \mathrm{MW} \text { so }) 4.2 \times 10^{6}=25 \times \\ & 10^{3} \times I \\ & I=170(\mathrm{~A}) \end{aligned}$	B1 B1 B1 C1 A1	Equation must be seen (not inferred from working) Allow any corresponding values of F and v ; working must be shown. No credit for finding area below curve Allow F is proportional to $1 / \mathrm{v}$ or graph is hyperbolic or correct calculation of $F v$ at two points (or more) Allow $P=4 \mathrm{MW}$ or ECF from (iii)1 Expect answers between 160-170 (A)
		Total	8	
		From $t=0$ to $t=2.0 \mathrm{~s}$: a non-zero horizontal line From $t=2.0$ to $t=3.5 \mathrm{~s}$: line showing $v=0$ From $t=3.5$ to $t=4.0 \mathrm{~s}$: non-zero horizontal line showing v is opposite in direction and magnitude larger than that of line drawn at t $=0$ to $t=2.0$.	B1 B1 B1	Judgement by eye
	ii	KE is constant. GPE increases linearly / proportional to t	B1	Allow: 'at constant rate' for 'linear' Not: unqualified 'constantly' Examiner's Comments Nearly four fifths of candidates completed 20a well, especially if they clearly stated the equations for momentum and kinetic energy. Those that did not generally forgot that the question required an expression with ' p ' and ' m ' in it. $1 / 2 p$ was a common wrong answer. 20bi was answered well, with some candidates either slightly misreading the graph when the velocity became negative or not spotting that the line was steeper for the last section of the movement than it was in the first. Most candidates spotted that the KE was constant because the velocity was constant. Rather fewer candidates explained that the GPE increased at a constant rate.
	ii	$\begin{aligned} & V^{2}=0.80^{2}+2 \times 9.81 \times 0.40 \\ & V=2.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	

3.3 Work Energy and Power

				Allow 1 mark for $(2 \times 9.81 \times 0.40)^{1 / 2}=2.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Examiner's Comments Many candidates selected the correct equation, although did not realise that the load was not at rest when it was released. The initial velocity was found from the graph on page 22 of the paper and was $0.80 \mathrm{~ms}^{-1}$.
		$\begin{aligned} & F=0.12 \times 2.9 / 0.025 \\ & F=14(\mathrm{~N}) \end{aligned}$	C1 A1	Possible ECF from (iii)1 Note: use of $2.8 \mathrm{~m} \mathrm{~s}^{-1}$ gives $\mathrm{F}=13(.44 \mathrm{~N})$ Note: $1.4 \times 10^{n}(\mathrm{~N})$ scores 1 mark Examiner's Comments Nearly three quarters of the candidates used the correct method for finding the average force acting on the load by considering the rate of change of momentum.
		Total	9	
	i	$\begin{aligned} & \frac{61000}{3600}=16.944 \\ & 17 \mathrm{~ms}^{-1} \end{aligned}$	M1 A0	Note v must be the subject Examiner's Comments This question was the first 'show' question of the paper. It is important that candidates show clearly their working. In this case it was expected to see 61 multiplied by 1000 and divided by 3600. Most candidates came up with an answer of 16.9.
	ii	$\left\{\begin{array}{ll}\begin{array}{l}\frac{1}{2} \times 1.9 \times 10^{5} \times 17^{2} \\ 2.7(5) \times 10^{7}(\mathrm{~J})\end{array} \\ 0=17^{2}+2 a \times 310 & \text { OR } \boldsymbol{t}=\frac{310}{8.5}=\mathbf{3 6} . \\ 2 a=(-) \frac{17^{2}}{2 \times 310}=(-) \frac{289}{620} & \text { OR } \boldsymbol{a}=\frac{17}{36.5} \\ 0.47\left(\mathrm{~ms}^{-2}\right)\end{array} \quad \begin{array}{l}31.9 \times 10^{5} \times 0.47 \\ 3\end{array}\right.$	C1 A1 C1 C1 A1 C1 C1 A1	Allow use of 16.9 gives $2.7 \times 10^{7}(\mathrm{~J})$ Allow $v^{2}=u^{2}+2$ as with values stated correctly Ignore negative sign Allow use of 16.9 gives 0.46 Not 0.5 Allow ECF from (b) (ii) 1 and (b) (ii) 2 Allow $\frac{2.7 \times 10^{7}}{310}$ Allow $1.9 \times 10^{5} \times 0.46$ $\frac{1.9 \times 10^{5} \times 17}{36.5}$ Allow alternatives $87100,87400,88000$ Examiner's Comments Most candidates were able to correctly write down the equation

3.3 Work Energy and Power

3.3 Work Energy and Power

	i	3 a very few will have very high velocities at top end of distribution 4 a long way from mean /r.m.s. velocity at 300 K 5 hence some able to escape	B1	
	v	helium nucleus is an α-particle	B1	max 2 out of 3 marking points
		so helium is generated by radioactive decay helium is found in (natural gas) deposits underground	B1	
		Total	13	

